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Joseph Black (1728 – 1799)
Teplo vs. teplota, koncept specifického tepla (Fahrenheitovy 

experimenty) a latentního tepla tání/vypařování
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Johan Carl Wilcke (1732 – 1796)

Antoine Lavoisier (1743 – 1794) 

Ice calorimeter (1783)
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Směšování (1. pol. 18. století) 

Tání ledu (Lavoisier-Laplace, 1783)
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Pierre Louis Dulong (1785 – 1838)

Alexis Théres Petit (1791 – 1820)

Dulongův-Petitův zákon (1819)

Specifická tepla pevných prvků vynásobená atomární 

hmotností jsou při pokojové teplotě cca 6 cal/mol/°C

Franz Ernst Neumann (1798 – 1895)

Hermann Franz Moritz Kopp (1817 – 1892)

Neumannovo-Koppovo pravidlo (1831)

Každý chemický prvek má stejnou tepelnou kapacitu 

jak volný, tak ve slitinách či sloučeninách
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Tepelná kapacita C je množství tepla, které je potřeba dané látce 
dodat, aby se její teplota zvýšila o jeden stupeň.

Důležité:
- za jakých podmínek
- jaké „množství“ látky (.../g, .../mol, .../cm3)
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Tepelná kapacita Kalsem 2025

Látka M

(g/mol)

N

(at/f.u.)

ρ

(g/cm3)

Cpm

(J/K/mol)

Cpm

(J/K/mol-at)

cp

(J/K/g)

S

(J/K/cm3)

Li 6,91 1 0,53 24,62 24,62 3,56 1,87

W 183,84 1 19,25 24,30 24,30 0,13 2,50

NaCl 58,44 2 2,16 50,50 25,25 0,86 1,86

Al2O3 101,96 5 3,99 79,04 15,81 0,78 3,11

C8H10N4O2

Kofein

194,19 24 1,23 227,84 9,49 1,17 1,44

C27H46O

Cholesterol

386,65 74 1,05 597,01 8,07 1,54 1,62
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Vibrace krystalové mříže - fonony

Vodivostní elektrony

Schottkyho anomálie – přechody mezi lokalizovanými el. stavy
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Fonony – harmonická aproximace Kalsem 2025
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• superbuňka 

• výchylky atomů

• výpočet elektronové struktury (DFT)

• Hellmann-Feynmanovy síly

• Hellmann-Feynmanovy síly

• silové konstanty

• dynamická matice

• vlastní hodnoty – frekvence fononů

• hustota stavů fononů

program Phonon – K.Parlinski

Fonony – harmonická aproximace Kalsem 2025
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Mg2SiO4 – Kvaziharmonická aproximace Kalsem 2025
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Intrinzické poruchy: Schottkyho poruchy, Frenkelovy páry 

G = ∑μj nj = ∑(μo
j + RT ln aj) nj

nj = νjo+∑νjr.λr

(∂G/∂λr)δ,T,P =∑
j
νjr (μo

j +RT ln aj) = ΔGo
r + RT ln Kr = 0   

ΔrCP = ΔHo
r (∂λr

eq/∂T)= Ar (ΔHo
r
2/RT2) exp (-ΔHo

r/RT)

λr
eq = Ar exp (-ΔHo

r/RT)

O. Beneš , R.J.M. Konings , D. Sedmidubský , M. Beilmann, O. S. Valu, E. Capelli, 

M. Salanne, S. Nichenko, A comprehensive study of the heat capacity of CsF from 

5 K to 1400 K, Journal of Chemical Thermodynamics 57 (2013) 92-10

Příspěvek intrinsických poruch Kalsem 2025
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Experimentální stanovení tepelné kapacity Kalsem 2025

Kalorimetr je zařízení ke stanovení množství tepla 
doprovázejícího proces, který v kalorimetru probíhá.

Klasifikace kalorimetrů je obtížná
velký počet různých typů kalorimetrů (více než 100)

různá klasifikační schémata a kritéria

- Princip měření (kompenzace tepla, akumulace tepla, výměna tepla)

- Podmínky měření (izotermní, adiabatické, isoperibolické ve 
statickém či dynamické modu)

- Konstrukce kalorimetru (jednoduchý, zdvojený/diferenční)

( )
exchangeaccumulation total cal

total cal surr

dd d

d d d

QQ C T
Q K T T

t t t
= + = + −



Experimentální stanovení tepelné kapacity Kalsem 2025

Adiabatická kalorimetrie, Qex = 0
A. Eucken (1909) W. Nernst (1910)

Kalorimetry home-made, obor teplot 4-90 K, ..., 400-1700 K
Tan Z. et al.: A fully automated adiabatic calorimeter for heat capacity measurement between 80 and 

400 K. Journal of Thermal Analysis and Calorimetry, 92(2), 367-374 (2008).

- pasivní AC kalorimetry (dobrá izolace kalorimetru – vakuum 10-3 až 10-4 Pa)
- aktivní AC kalorimetry (temperace tepelného stínění mezi kalorimetrem

a okolím)
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Gagarin P. G. et al.: Heat Capacity and Thermal Expansion of LaMgAl11O19

Russian Journal of Inorganic Chemistry, 69, 879-774 (2024).

Adiabatická kalorimetrie

Experimentální stanovení tepelné kapacity Kalsem 2025

RTC 7,3-40,7 K (PPMS, QD)
ADC 23,4-347,9 K (BKT-3, …)
DSC 315-1865 K (404F-Pegasus, 
Netzsch)
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Tepelně pulzní kalorimetrie, Qex = f(t)
A.G. Cole et al. (1960)

PPMS, Quantum Design
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Tepelně pulzní kalorimetrie



Experimentální stanovení tepelné kapacity Kalsem 2025

( )total w b

d ( )
( ) ( )

d

T t
P t C K T t T

t
= + −

( ) ( ) total
b max 1

1 w

( ) exp ,
Ct

T t T T t T
K




 
− =  =  − = 

 

2
1

total
max

RIQ
C

T T


= =
 

( ) sample

m platform/sample platform

sample

p

M
C c c

m
= −

Tepelně pulzní kalorimetrie



Experimentální stanovení tepelné kapacity Kalsem 2025

Tepelně pulzní kalorimetrie
Sedmidubský D. et al.: Chemical bonding and thermodynamic properties of gallium and indium 

monochalcogenides. The Journal of Chemical Thermodynamics, 128, 97-102 (2019).

RTC 2-300 K (PPMS, QD)
DSC 258- 358 K (-DSC III, Setaram)
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Differenční skenovací kalorimetrie, Qex = f(t) alt. Qex = 0
A. Tian and E. Calvet (1922)

Schubert F. et al: Optimization of a sensor for a Tian–Calvet calorimeter with LTCC-based 
sensor discs. Journal of Sensors and Sensor Systems, 5, 381-388 (2016).
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Differenční skenovací kalorimetrie, Qex = f(t) alt. Qex = 0
E. S. Watson and M. J. O'Neill (1962)

Základní teplotní programy pro stanovení tepelných kapacit
- Continuous heating (kontinuální ohřev, T1 → T2)

- Step-by step heating (krokový ohřev, Ti = 5-10 °C)
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Differenční skenovací kalorimetrie
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Vhazovací kalorimetrie
R. Bunsen (1870) – ice calorimeter (T → T0, T0 = 0°C)

P. A. Giguere et al. (1955) – difenylether (T → T0, T0 = 27°C)
SETARAM (1974) – invers drop calorimetry (T0 → T)
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Vhazovací kalorimetrie

Multi HTC-96, Setaram



Experimentální stanovení tepelné kapacity Kalsem 2025

Vhazovací kalorimetrie
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- Oblast velmi nízkých teplot (do cca 10 K)
- Oblast nízkých teplot (10 – 350 K)
- Oblast středních a vysokých teplot (nad 350 K)

Leitner, J. et al.: Heat capacity, enthalpy and entropy of calcium 
niobates. Journal of Thermal Analysis and Calorimetry 95, 397-402 (2009).
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Experimentální Cp data, T < 10 K
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Experimentální Cp data, T = 10-350 K

Metoda trial-and-error + optimalizace (simplex)


−

=

+=
33

1

phEphDph

n

i

iCCC

( )

D
3 x 4

D D
phD 2

D D 0 D

exp( )1 9
d

1 exp( ) 1

x xR
C x

T x x

 
=  

− − 
 ( )

2 E
phE E 2

E E

exp( )1

1 exp( ) 1

i
i i

i i

x
C R x

T x
= 

− −

ΘE αE αD

D E

1 1
, ...

1 1 iT T − −

Cpm(298,15), Hm(298,15) − Hm(0), Sm(298,15)

Empirická korekce na anharmonicitu vibrací
Martin C. A.: Simple treatment of anharmonic effects on the specific 

heat. Journal of Physics: Condensed Matter 3, 5967 (1991).
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Experimentální Cp data, T = 10-350 K
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Experimentální data Cp + H, T > 298 K
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Experimentální data Cp + H, T > 298 K
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Experimentální data Cp + H, T > 298 K

Zpracování experimentálních dat Kalsem 2025

CaNb2O6
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Metody příspěvkové

Příspěvky Cpm,i – atomární, iontové, strukrurní, ... (NKR).

Metody korelační

Fyzikální vlasnost X – např. molární objem, ...

m m,p p iC C=

( )mpC f X=



Neumannovo-Koppovo pravidlo
„Each element (in the solid state) has essentially the same specific or 

atomic heat in compounds as it has in the free state.“ 
Kopp H.: Investigations of the heat capacity of solid bodies,

Phil. Trans. Royal Soc. London 155 (1865) 71-202.

m 2 m m(VSi ) (V) 2 (V)

24,93 2 19,96 64,85 J/K/mol (64,34)

p p pC C C= + =

+  =

m 2 4 m m 2(Mg SiO ) 2 (MgO) (SiO )

2 37,26 44,43 118,95 J/K/mol (118,42)

p p pC C C= + =

 + =

Zdroj Počet Chyba Do 2% Nad 5%

TCA (2003) 295 3,3% 135 (46%) 65 (22%)

Aktualizace 421 3,3% 184 (44%) 91 (22%)

Odhadové metody … Kalsem 2025



Korelace Cpm vs. Vm
Glasser L., Jenkins H.D.B.: Ambient Isobaric Heat Capacities, Cpm, for ionic solids and 

liquids: an Application of Volume-Based Thermodynamics (VBT).

Inorganic Chemistry, 50(17), 8565-8569 (2011)

Odhadové metody … Kalsem 2025

Korelace molární tepelné kapacity (Cpm) při teplotě 298,15 K na objemu vztaženém na vzorcovou jednotku dané pevné látky

(Vm = Vcell(nm3)/Zcell, Zcell je počet vzorcových jednotek připadajících na elementární buňku)



Kalsem 2025

Děkujeme za pozornost
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